首页> 外文OA文献 >From continuum mechanics to SPH particle systems and back: Systematic derivation and convergence
【2h】

From continuum mechanics to SPH particle systems and back: Systematic derivation and convergence

机译:从连续介质力学到spH粒子系统再回来:系统化   推导和收敛

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we derive from the principle of least action the equation ofmotion for a continuous medium with regularized density field in the context ofmeasures. The eventual equation of motion depends on the order in whichregularization and the principle of least action are applied. We obtain twodifferent equations, whose discrete counterparts coincide with the scheme usedtraditionally in the Smoothed Particle Hydrodynamics (SPH) numerical method(e.g. Monaghan), and with the equation treated by Di Lisio et al.,respectively. Additionally, we prove the convergence in the Wassersteindistance of the corresponding measure-valued evolutions, moreover providing theorder of convergence of the SPH method. The convergence holds for a generalclass of force fields, including external and internal conservative forces,friction and non-local interactions. The proof of convergence is illustratednumerically by means of one and two-dimensional examples.
机译:在本文中,我们从最小作用原理出发,导出了在测量环境下具有规则密度场的连续介质的运动方程。最终的运动方程式取决于规则化和最小作用原理的应用顺序。我们得到两个不同的方程,它们的离散对应项与光滑粒子流体力学(SPH)数值方法中传统使用的方案(例如Monaghan)一致,并且分别与Di Lisio等人处理的方程一致。此外,我们证明了相应量度值演化在Wasserstein距离上的收敛性,而且提供了SPH方法收敛的顺序。收敛适用于一般的力场,包括外部和内部保守力,摩擦力和非局部相互作用。通过一维和二维示例以数字方式说明收敛证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号